Student Exploration: Plate Tectonics

Vocabulary: collisional boundary, convergent boundary, crust, divergent boundary, earthquake, lithosphere, mantle, plate, plate tectonics, subduction zone, transform boundary, volcano

Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

Volcanoes are openings in Earth’s **crust** where lava, gas, and ash can erupt. Where are active volcanoes located? **Volcanos** are usually near the ocean or land.

1. **An earthquake** is a violent shaking of Earth’s surface. Where are earthquakes common? **Along the plate crust and usually near the land of the crusts.**

Gizmo Warm-up
Volcanoes, earthquakes, mountains, and other features of Earth’s surface owe their origin to the movements of **plates**: enormous, slowly-moving sections of Earth’s crust. At plate boundaries, plates collide, move apart, move under or over each other, or slide past one another. The theory of **plate tectonics** describes how the plates move, interact, and change the physical landscape.

The *Plate Tectonics Gizmo™* shows a cross-section, or side view, of Earth. (Not to scale.) Above the cross section is a bird’s-eye view of the same location.

1. **Turn on Show labels.** What are the layers of Earth that you can see? I can see the crust, lithosphere, and mantle.
2. **Turn on Boundary name,** and click on each boundary. What four boundaries do you see? **Transform Boundary, Convergent Boundary (Collision and Subduction), and Divergent Boundary**

![Plate Tectonics Gizmo](image)

<table>
<thead>
<tr>
<th>Activity A: Sliding plates</th>
<th>Get the Gizmo ready:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Select BOUNDARY A.</td>
</tr>
</tbody>
</table>

Question: What happens when plates slide past one another?
1. **Observe**: Boundary A is a **transform boundary**. The arrows below the BOUNDARY A label will move the plates. Click the left arrow once to see how the plates move.

 How would you describe the motion of plates in a transform boundary? It moves farther away.

2. **Sketch**: Draw a bird’s-eye view of the plate boundary before and after the plate motion. Draw an arrow to show which way the plate moved.

 ![Before movement](image1) ![After movement](image2)

3. **Locate**: Turn on **Show location**. Where on Earth can you find this type of boundary? (Note: You can refer to a world map or atlas for location names.)

 Near the California coastline, above/below South America, above Africa, and on the sides of India.

 Highlight these locations on the map below.
Question: What happens when two continents collide?

1. **Observe:** Boundary B is an example of a **convergent boundary**, where two plates are moving toward one another. When the two plates both contain continental crust, it is called a **collisional boundary**. Click the left arrow four times to see how the plates move.

 How would you describe the motion of plates in a collisional boundary? **The plates are going towards each other.**

2. **Sketch:** Draw a side view of the plate boundary before and after the plate motion. Draw an arrow to show which way the plate moved.

 ![Before movement](image1) ![After movement](image2)

3. **Locate:** Turn on **Show location**. Where on Earth can you find this type of boundary? (Note: You can refer to a world map or atlas for location names.)

 Above India, above the Middle East, and on the NW side of Eurasia

 Highlight these locations on the map below.
Activity C: Oceanic crust meets continental crust

Get the Gizmo ready:
- Turn off Boundary name and Show location.
- Select BOUNDARY C.

Question: What happens when ocean crust collides with continental crust?

1. **Observe:** Boundary C is another type of convergent boundary called a **subduction zone.**

 Click the left arrow four times to see how the plates move.

 How would you describe the motion of plates in a subduction zone? They are coming towards each other.

2. **Sketch:** Draw a side view of the plate boundary before and after the plate motion. Draw an arrow to show which way the plate moved.

 ![Before movement](image1.png)
 ![After movement](image2.png)

3. **Locate:** Turn on Show location. Where on Earth can you find this type of boundary? (Note: You can refer to a world map or atlas for location names.)

 Western side of South America, bottom of Alaska, All around the Filipino plate, South/SE/Eastern side of the Australian Plate, and Western side of the Pacific plate

 Highlight these locations on the map below.
Activity D: Spreading plates

Get the Gizmo ready:
- Turn off Boundary name and Show location.
- Select BOUNDARY D.

Question: How is new crust formed?

1. Observe: Boundary D is a **divergent boundary**. Click the right arrow four times to see how the plates move.

 How would you describe the motion of plates in a divergent boundary? **The plates are moving away from each other**

2. Sketch: Draw a side view of the plate boundary before and after the plate motion. Draw an arrow to show which way the plate moved.

 Before movement
 After movement

3. Locate: Turn on **Show location**. Where on Earth can you find this type of boundary? (Note: You can refer to a world map or atlas for location names.)

 The western side of the South American Plate, ¾ of the African Plate, Most of the Antarctic Plate, and Eastern side of the North American Plate/Eurasian Plate

Highlight these locations on the map below.